Possibilistic classification of Brain Tumors by MRS based on Functional Data Analysis and Subpattern discovery

نویسندگان

  • J. García-Gómez
  • I. Epifanio
  • M. Julià-Sapé
  • D. Monleón
  • J. Vicente
  • S. Tortajada
  • E. Fuster
  • A. Moreno-Torres
  • A. Peet
  • F. Howe
  • B. Celda
  • C. Arús
  • M. Robles
چکیده

J. García-Gómez, I. Epifanio, M. Julià-Sapé, D. Monleón, J. Vicente, S. Tortajada, E. Fuster, A. Moreno-Torres, A. Peet, F. Howe, B. Celda, C. Arús, and M. Robles ITACA-IBIME, Universidad Politécnica de Valencia, Valencia, Valencia, Spain, Departament de Matemàtiques, Universitat Jaume I, Valencia, Valencia, Spain, CIBER de Bioingeniería, Biomateriales y Nanomedicina, Spain, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain, Fundación de Investigación del Hospital Clínico Universitario de Valencia, Valencia, Spain, Research Department, Centre Diagnòstic Pedralbes, Barcelona, Spain, University of Birmingham, Birmingham, United Kingdom, Birmingham Children’s Hospital, Birmingham, United Kingdom, St George’s Hospital Medical School, London, United Kingdom, Departamento de Química-Física, Universitat de València, Valencia, Spain

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

P63: Automatic Detection of Glioblastoma Multiforme Tumors Using Magnetic Resonance Spectroscopy Data Based on Neural Network

Inflammation has been closely related to various forms of brain tumors. However, there is little knowledge about the role of inflammation in glioma. Grade IV glioma is formerly termed glioblastoma multiform (GBM). GBM is responsible for over 13,000 deaths per year in the America. Magnetic resonance imaging (MRI) is the most commonly used diagnostic method for GBM tumors. Recently, use of the MR...

متن کامل

Computer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity

Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...

متن کامل

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...

متن کامل

نقش متابولیتها در تشخیص توده های مغزی با استفاده از طیف سنجی تشدید مغناطیس هسته ای و مقایسه غلظت آنها در بیماران تومورال با افراد سالم

Background and Aim: Brain tumors have remained as a significant cause of morbidity and mortality and are often refractory to treatment. The grading of brain tumor has an important implication in clinical management. Currently, magnetic resonance spectroscopy (MRS) is an important dimension in evaluating metabolites and grading brain tumors. The aim of this study is to evaluate metabolites in br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008